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This paper explores three numerical schemes for efficient simulation of slender
vortex filaments. The schemes defeat the spatial and temporal stiffness of the equa-
tions of motion by requiring only adequate resolution of the filament centerline and
allowing large integration time steps. In order to correctly capture the self-induced
filament velocity, the first scheme uses an explicit velocity correction method, the
second scheme relies on a logarithmic extrapolation of two velocity predictions, and
the third scheme employs a local refinement algorithm. The performances of the
three schemes are contrasted in light of unsteady computations of a perturbed vortex
ring with small core to radius ratio. 2000 Academic Press
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1. INTRODUCTION

Vortex element schemes are designed for application to flows with highly concentra
vorticity. These schemes are typically based on discretization of the vorticity field in
spherically smoothed Lagrangian elements of overlapping cores and transport of these
ments along particle trajectories. The advantages of this approach stem from the Lagran
discretization, which naturally concentrates computational elements into regions of h
vorticity, and from the Lagrangian transport procedure, which minimizes numeric
diffusion.

One ad hoc ansatz for the application of vortex element schemes to the simulatior
slender filaments is to represent the filament centerline using a “chain” of regularized vor
elements [1, 2]. When the cores of the vortex elements are overlapping, the smoott
procedure leads to a well-defined numerical vortex core structure, which is “typicall
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identified as the physical core vorticity distribution. However, Klein and Knio [3] show the
in the resulting thin-tube model O(1) errors appear in the prediction of the vortex filame
centerline motion. A detailed asymptotic analysis of the numerical and the physical vortic
structures in the vortex core reveals the origin of the discrepancy and naturally leads
correction of the scheme. These ideas are extended in [4] (see also [5]) to include nontr
vortex stretching as well as the effects of viscosity.

Application of thin-tube vortex element models to very thin vortices is difficult for twc
reasons. First, when the ratipR of the core size to the characteristic radius of curvature c
the filament centerline is small, high spatial resolution requirements arise. This is the ¢
because, in the original approaches suggested in [3], the numerical core radius is esser
of the same order as the physical core radius. In addition, vortex elements are require
strongly overlap to ensure that the numerical core structure is well defined. Thus, wher
slenderness rati®/R is on the order of 107 or smaller, the number of elements needec
to satisfy overlap with cores of ordérmay exceed by several orders of magnitude the
number of elements needed for adequate resolution of the filament centerline. This wo
consequently, necessitate prohibitively large CPU resources.

A second (related) difficulty is that the small spacing between elements may imp«
severe restriction on the integration step. These stiffness problems are well known in var
Lagrangian calculations in which computational elements may tend to cluster. The temp
stiffness compounds the spatial resolution problem and substantially increases the der
for computational resources.

In this paper, we explore several means to overcome the spatial and temporal stiffne:
slender vortex simulations. We focus on the corrected thin-tube models proposed in [3]
[4] and implement several approaches to enhance their performance. In order to des
these approaches, we start in the following section with a brief outline of the corrected tt
tube models. Section 3 then summarizes the various approaches used to address the st
issues. Section 4 provides a brief discussion regarding the selection of model parame
based on static velocity predictions. Implementation of the optimized schemes is illustre
in Section 5 in light of unsteady 3D computations of a perturbed slender ring. We conclt
in Section 6 with a brief summary.

2. CORRECTED THIN-TUBE MODELS

2.1. Governing Equations for Filament Motion

Corrected thin-tube models are Lagrangian vortex methods that “simulate” the asympt
filament evolution equation [6]

X(s) = 4L [In(g> +C} k(s)b(s) + QT (X(s)), 1)
T b))

whereTl is the circulation of the filameng is the arc length parameter along the time-
dependent filament centerling&t), x andb are the curvature and unit binormal 4t
respectively, ane(t) is the time-dependent core structure coeffici€nt) represents the
contributions of the local swirling and axial velocities to the leading-order velocity of tt
filament; it is expressed as

CH) =Cy(t) +Cy (1), @
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where
; 1
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v©® andw© are the leading-order swirling and axial velocities within the filament core
respectively, and = r /8. Meanwhile Q ' is the so-called finite part of the line Biot—Savart
integral [3, 6]; it represents the nonlocal self-induction of the filament.

The core structure coefficients evolve in time according to the evolution of the leadir
order axial vorticity and axial velocity distributions. As shown by Callegari and Ting [6]
the leading-order axial vorticity and velocity within the core obey inhomogeneous he
equations with a source term that depends on the stretching of the filament centerline
the inviscid limit, simple closed-form expressions for the evolutio@ p&ndC,, have been
obtained in [7],

St
C,(t) =C,(0) +1 5
®) O +1In 30 )
RECIK
C,() = [%] Cu(0), (6)

where S(t) is the instantaneous total arc length of the filament. When viscous effects «
present, the expressions describing the evolution of the core structure coefficient are n
involved [4, 5, 7]; for brevity, they are omitted.

2.2. Numerical Simulation

Construction of thin-tube models is based on discretization of the centétlin® a
finite number of regularized vortex elements with spherical overlapping cores. The vor
elements are described in terms of their Lagrangian position vegtdts,i, . .., N, which
are indexed consecutively such that the resulting “chain” describes the filament center
[2, 3]. Based onthe Lagrangian variables, a smooth representationeftharizedilament
vorticity is obtained using the expression [8]

N
(X, 1) =Y Téxi ) f,(x— xi (1), (7)

i=1

wheref, (x) = 03 f(|x| /o), f is a rapidly decaying spherical core function of unit mass
8xi(t) is the arc length increment associated with ittteelement, and is the numeri-
cal core radius. When inserted into the three-dimensional Biot—Savart integral, the ab
representation yields the desingularized velocity field

N

r — xi(t Sx(t
v“”‘(x,t>=—gz(x &‘fi()_;)';‘()mx—m(t)), (®)

i=1
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wherek, (X) = k(|x|/0), andk(r) = 471f0r £2f (&) d¢ is the velocity smoothing kernel
corresponding td [8]. In the computations, the arc length incremetigt) are related to
the distribution of particle positions using the procedure in [3]. It is based on a Lagrang
spectral collocation interpolation of the filament geometry onto the particle positions &
approximating the arc length based on spectral collocation derivatives of the interpole
filament centerline.

The above discretization and regularization procedure endows the thin tube with a nur
ical core structure that depends on the choice of the core size and the smoothing func
Unfortunately, if the numerical core vorticity distribution is identified with the physical cor
vorticity distribution, and O(1) velocity error in the predicted centerline velocity occurs.

To obtain a velocity prediction that is consistent with Eq. (1) and the definitiots of
(Eg. (2)) andQ " [6], Klein and Knio [3] propose three correction procedures for the abov
thin-tube model. We restrict our attention to two of these approaches, which will be us
later in the optimization of the numerical scheme.

In the first approach, the numerical core radius taken to be equal to the physical core
sizes, and the velocity correction

r
sv=—(C —C"™«b 9)
47

is added to the thin-tube predictiof" to absorb the discrepancy in the centerline velocity
Here,C"™ is the numerical core constant which corresponds to the choice of core smooth
function [3].

In the second approach, the numerical core ragdiissselected according to

o = 8exp([C™ — C). (10)

This ensures that the corresponding regularized velocity #¥&%d(8) coincides with the
theoretical prediction in (1) at the particle positions. An advantage of the present appro
is that explicit evaluation of the curvature and binormal at the filament centerline is avoid
Once the corrected centerline velocit§f), is determined it is used to update the positions

of the vortex elements. This is achieved by integrating

i cor

- =V (xi M), ). (11)

ot
Inthe computations, a third-order Adams—Bashforth scheme is used to numerically integ
the above system.

3. OPTIMIZATION TECHNIQUES

In this section, we outline three methods for optimizing the corrected thin-tube mo
outlined in the previous section. In all cases, our approach is motivated by the observa
that (1) in the previous construction the number of elements required to achieve overle
much larger than that needed to adequately describe the centerline geometry and (2) ¢
quently, both the temporal stiffness and high spatial resolution problems can be effecti
addressed if a coarser (or generally more efficient) discretization can be adopted. This
servation suggests a number of different optimization approaches, of which we discus:s
following three.



72 KNIO AND KLEIN

3.1. Method 1: Extrapolation Technique

This approach is based on selecting a discretization level that is fine enough for the |
resentation of the filament centerline irrespective of the filament coré sfeepreviously
discussed, selection of numerical core size levels using either of the approaches of the
vious section becomes problematic since overlap among neighboring elements may ne
satisfied. In fact, for small slenderness ratios, overlap is likely to be everywhere violate

To avoid this issue, a large value of the numerical core size is used.d@dte the core
size parameter predicted by Eq. (10), let

oo(t) = max 18X ()] (12)
be the maximum inter-element separation distancey;let Ko,, and leto, = ao;. Here
K ande are real constants. Note that for any choice- 1 ande > 1 implementation of
a thin-tube model using eithet or o, will automatically satisfy the overlap condition.

Next, we recall that for any the velocity field predicted by the uncorrected thin-tube
model corresponds to [3]

r 2
yim — y [Iog(—) + C“m] kb+Qf (13)
U o

as long as strong overlap is satisfied. Consequently, if we;leindv, denote the thin-
tube velocity prediction based en ando,, respectively, then theorrectedvelocity field
prediction can be estimated based on the following logarithmic extrapolation procedure

log (%)
loga -~

cor
\

=V + (V1 —V2) (14)

In other words, the corrected centerline velocity can be obtained at the cost of two “coe
mesh-fat core” evaluations. Note that the present procedure does not require estimat
the filament curvature and binormal.

3.2. Method 2: Explicit Velocity Correction

The velocity correction technique is based on a single velocity evaluation using la
o and implementing an explicit correction to the corresponding velocity prediction. Th
approach has been firstimplemented in Zhou's study of Kelvin waves on a slender vortex
Here, we implement a variant of the velocity correction approach which is summarized

r

Ve =y + — Iog(o:l>/cb, (15)
Vb o

whereo; is dynamically determined during the simulation using the same definitions d

cussed for method 1. In the computations, the curvature and binormal are obtained follow

the procedure given in [3].

3.3. Method 3: Local Mesh Refinement

This approach is motivated by the observation that the numerical core structure alor
particular location on the axis of the thin tube is actually induced by neighboring eleme
only. Since the core smoothing function decays rapidly, the numefactitity structure at
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a given point is determined by the fields of elements lying within a few numerical core ra
of that point. This suggests the following approach for estimating the corrected thin-tt
velocity.

As in the previous two methods, we rely on a discretization level that is fine enough
adequately represent the filament geometry. However, unlike the previous two approac
the rescaled numerical core size predicted by Eq. (10) is used, so that overlap is not glol
satisfied. Based on this choice of parameters, a modified velocity evaluation procedu
implemented. To evaluate the velocity field at a given point, the elements are divided into:
disjoint groups: a group of neighboring elements and a group of well-separated eleme
A separation distance of three core radii is used as basis for this segregation procedure
contribution of elements belonging to the second group is computed directly on the co:
grid. Meanwhile, the contribution of neighboring elements is accounted for by loca
remeshing the corresponding segments using a fine-enough grid for core overlap t
locally satisfied.

In the present computations, a simplified version of the local remeshing procedure is
plemented. It consists of determining, at every time step and in a global fashion, a Lagran
grid that is fine enough for overlap to be everywhere satisfied. The fine grid is determii
by Fourier transformation of the filament geometry, extending the resulting spectrum
array padding, and then inverse transforming the extended spectrum onto physical sp:

Remark. The improved schemes outlined above address the stiffness of the sler
filament equations using different strategies. From a practical standpoint, method 1 (M
very attractive as it does not require any modification of a corrected thin-tube code [3,
Specifically, all the code elements that determine the element velocity based on Eg.
remain unchanged, and the optimization operates on their output only. The attractive fee
of method 2 (M2) is that it isolates the singular part of the element evolution equatic
and, as outlined in [9], enables the optimization of the numerical integration using opera
splitting approaches. However, a disadvantage of M2 is that it requires explicit evaluatiol
higher order derivatives of the filament centerline. This has adverse effects on the nume
stability of the scheme, as observed in [3] and discussed in Section 5.2 below. Methc
(M3) would be quite attractive in the context of fast vortex element methods (e.g., [10, 1:
which use similar clustering ideas to defeat theN®) cost of direct vortex interactions.
The considerable bookkeeping and storage management associated with these me
compared to the direct methods would then lose its importance. A key disadvantage of
however, concerns the stiffness issue. As the scheme operates with the physical core
and evaluates velocities by directly accounting for neighboring (overlapping) computatio
elements, there will be strong cancellation of large kernels as the core size diminishes.
phenomenon is due to the fact that the local induced velocities are by a factps)O
larger than the net filament velocity [3, 6]; it leads to amplification of roundoff errors ar
compounds the stiffness problem.

It follows from the present discussion that, from a practical standpoint, M1 appears as
most attractive alternative. This claim is further supported in the computational tests bel

4. PARAMETER SELECTION

The optimization methods introduced above involve various numerical parameters |
are related to the discretization of the slender filament and to the choice of numerical
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size(s). Specifically, for M1 and M2 one needs to specify the number of elerh&rasd the
overlap parameteK . For M1, one must in addition specify a second parametdtor M3,
core coarsening parameters are not needed but fine and coarse discretization levels are
instead. In this section, we explore general guidelines for the selection of these parame

To this end, we start by emphasizing that the constructions of the previous two secti
are based on the key assumption that the predictions of the thin-tube model agrees
the asymptotic expression. For this to hold, two conditions must be satisfied [3]: (a)
selected (coarsened) numerical core size must still be small enough for the correspon
prediction to fall within the range of validity of the asymptotic theory, and (b) the numeric:
Biot—Savart integral must be accurately evaluated. As discussed below, one can use |
two conditions to develop guidelines for the selection of optimization parameters.

To illustrate these guidelines, we consider the case of a circular vortex ring. Variab
are normalized so that the dimensionless ring ratlus 1, and the dimensionless circu-
lation " = 1. The core smoothing functiofi(r) = secl(r3) is used. The corresponding
velocity kernel isc (r) = tanh(r) [8], and the numerical core structure coeffici@if" =
—0.4202 [3]. For brevity, we focus exclusively on static velocity predictions; unsteac
computations are presented in the following section.

We start by addressing condition (b) above, and so we examine the role of the patamet
that entersin M1 and M2. As discussed earli€measures the ratio between the maximum
element length and the numerical core size, and consequently it measures the degr
overlap among neighboring cores. Thsjs referred to as an “overlap” parameter. This
aspect has been extensively discussed in theoretical convergence studies of particle me
(e.g., [8]) as well as computational studies (e.g., [2]). Based on previous experiences,
would expect that the numerical evaluation of the Biot—Savart integral becomes valid wi
neighboring cores overlap (i.e., in the rarige- 1). In Fig. 1, we examine the effect Kf by
applying M2 to compute the self-induced velocity of a slender vortex ring avith 0.001.
The results indicate that fa€ > 1.5, the predictions become essentially independent of th
selected value oK. In all the tests below, we conservatively choose overlap parameters
the rangeK > 2.

0.7

0.65 -

Velocity
j=]

0.55

0.5 ! ;
2
K

FIG.1. Effectofoverlap paramet& onthe velocity prediction. Results are obtained using M2 Witk 512.
The core radiug = 0.001.
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FIG. 2. Dependence of the discrete estimate of the numerical core corGt&nfrom Eqg. (16) on the ring
slenderness ratio = 5 /R. The ring is discretized usiny = 2048 elements.

We now turn our attention to the first condition, which concerns the slenderness r:
of the filament. Note that both M1 and M2 rely on numerical Biot—Savart integrals wi
enlarged cores, and one must consequently ensure that the corresponding slendernes
€ = kmaxo IS small enough to fall within the regime of validity of the theory. To explore the
regime of validity of the constructions, we rely on the computed self-induced velocity
the circular ring to generate a discrete estimate of the numerical core constant; we use

47V R
ctm ~ ”T _ Iog(8—>, (16)

o

whereV is the computed self-induced velocity aadis the numerical core radius. In
Fig. 2, we plot the values @&"™ computed using Eqg. (16) against the ring slenderness rat
e =6 /R. As can be observed in Fig. 2, fer< 0.1 the computed core consta@t™ is
weakly dependent on the slenderness ratio. It is also interesting to note thata®ases
the predicted values tend toward the theoretical value [3].

The above exercise can be used, in the application of the optimization techniques
guide the selection of appropriate grid coarsening levels, or alternatively of the numbe
elements. For instance, for a filament with characteristic peak curvatgy¢he condition
€ < 0.1 can be used to estimate a maximum allowable element les#gth, A reasonable
estimate for M2 i$¢max >~ 0.1/ (K kmax); for M1, we selmax >~ 0.1/ (K akmax) . ASsuming
that the overall filament arc length $and that the lengths of vortex elements are fairly
uniform, then the number of elements may be estimated using S/§¢max IN addition
to relying on this initial estimate, the computations of the following section continuous
monitore in order to verify that it remains within acceptable levels. Our experiences indice
that the results of the optimized methods are valid wheemains small; in contrast, an
example is provided in Section 5.2 which shows that the predictions deteriorate-forl.

We conclude this section with a brief comment regarding the parameised in M1.
Following the discussion above, whé&h and N have been optimizedy must naturally
be restricted to the range > 1. In order not to penalize the discretization level, it would
obviously be advantageous to choas@s close to unity as possible. At the same time
one should guard against the possible amplification of extrapolation errors. To examine
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FIG. 3. Effect of« on the computed self-induced velocity of a circular vortex ring wite: 0.001. Results
are obtained using M1 witK = 2 andN = 2048.

issue, we use M1 to compute the self-induced velocity of a slender circular vortex ring;
results are plotted in Fig. 3 against the corresponding values&$ shown in the figure,
for o > 1.25 the predictions become essentially insensitive to the selected valudlois
restriction is imposed in all the calculations below.

5. RESULTS AND DISCUSSION

Implementation of the optimized schemes outlined above is described in light of invis
3D simulations of a slender vortex ring. We use the same normalization convention and
same core smoothing function as in the previous section.

In order to observe a nontrivial slender vortex evolution the ring centerline is perturb
using plane, azimuthal bending waves. Initially, the perturbed ring radius is given by

p () = R[1 4 ag sin(ky6) + a sin(k20)], 17)

where# is the azimuthal anglés; andk, are integer wavenumbers, aaganda, are the
corresponding amplitudes.

5.1. Performance Measures

The evolution of the slender ring described above is computed using the rescaled
merical core radius approach [3], which is referred to as original scheme, as well as
optimized schemes based on methods 1, 2, and 3 above, which are labeled M1, M2, anc
respectively. Results are obtained for a slender vortex ringavith0.02, k; = 2, ky = 3,
anda; = a; = 0.02. The parameters used in the runs are summarized in Table I. Note t
core overlap using Would not be satisfied in M1, M2, and M3 at the selected coarse-gri
resolutions.

The predictions of the original and optimized schemes are firstillustrated in Fig. 4, whi
shows the evolution of the peak centerline curvature and velocity. The results show that
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TABLE |
Numerical Parameters and Performance Measures

Original M1 M2 M3
o G (01, 02) o1 G
N 1024 256 256 256/1024
K — 2 3 —
o — 15 — —
CPU timé (s) 708.9 68.19 45.98 71.37
Performance gain 1 10.39 15.42 9.93

2 SGIR10000 195-MHz processakf = 0.002; 1500 iterations.

peak curvature of the filament undergoes large-amplitude periodic oscillations and that
behavior of the peak velocity follows closely that of the peak curvature. The figures sh
that the predictions of the optimized schemes are in close agreement with each other
with the predictions of the original scheme.

The agreement between the curves in Fig. 4 is quantified by computing the rela
deviation between the predictions of the improved schemes and the results of the oric
method. For instance, the relative deviation in peak curvature for meth@idéfined as

. "
 maxg g |ki(t) — il |

D, :
maXo, kmax(t)

(18)

A similar definition based on the peak velocity is used. Based on these definitions,
computed relative deviation in peak curvature is 0.159% for M1, 0.118% for M2, al
0.194% for M3. Meanwhile, the relative deviations in peak velocity are 0.109% for M
0.064% for M2, and 0.234% for M3.

Very close agreement between the predictions of the original and optimized scheme
also evident in Fig. 5, which depicts the spatial distribution of centerline curvature alo
the circumference of the ring. As observed earlier, the results of the optimized schemes
nearly identical to those obtained using the original model.

— orig
051 ---- Ml
——- M2
—-- M3

max. curvature
max. velocity

=3
a
N

o
Y
-3

time time

FIG. 4. Evolution of the maximum curvature (left) and maximum velocity (right) for a perturbed vortex rin
with & = 0.02. Plotted are results obtained using the original method and schemes M1, M2, and M3. Parame
are indicated in Table I.
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FIG. 5. Spatial distribution of the curvature along the filament axis-at3. Curves are generated using the
results of the original method and schemes M1, M2, and M3. Parameters are indicated in Table I.

The performance of the original and optimized schemes is quantified in Table I. The ta
provides the total CPU time spent and the performance gain which is defined as the rati
the current CPU time to the CPU time spentin the original scheme. The results show thai
optimized schemes produce an order-of-magnitude enhancement in the performanc
the computations. This is a substantial performance gain, especially since a relatively I:
core-to-radius ratio is selected.

5.2. Temporal Stiffness

The numerical construction outlined in the previous section suggests that by only req
ing adequate representation of the filament centerline the improved schemes may als
effective in defeating the temporal stiffness of the slender filament equations of motion
the present section, we briefly explore this possibility in light of a simplified heuristic anal
sis of the critical time stepht.i;. Specifically, the analysis is based on performing unstead
calculations with different values of the time stext,, and monitoring the value at which
the simulations become numerically unstable. To interpret the observations, simulati
are performed with different values of the core size; results are obtainedrwitl®.02,
0.002, and 0.0002. Again, we restrict our attention to the initial centerline geometry of t
previous section and to improved schemes M1 and M2 Wita 256.

In the examples of Section 5.1, the optimization parameters were selected following
guidelines developed in Section 4. In particular, the critetien 0.1 was satisfied through-
outthe computations. Inthe presentimplementations, the parameters for M1 are deliber:
chosen so that this criterion is violated; we se= 3 ande = 2. This enables us to observe
the effects of a poor choice in optimization parameters. For M2, we stilkuse3.

The results of the analysis are summarized in Table I, which provides the observed v
of At for different values ot7 and in Fig. 6, which depicts the evolution of the peak
centerline curvature far = 0.002 and 0.0002. Table Il also shows the dominant period ¢
the oscillations in the filament centerline, which is deduced from the curvature evoluti
curves in Figs. 4 and 6.
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TABLE Il
Critical Time Step and Period

o Atgie: M1 Atgic: M2 Period
0.02 4.43x 10°? 1.35x 102 1.420
0.002 1.80x 102 4.17x 1073 0.836
0.0002 1.10< 102 2.56x 1072 0.586

The results show that for both M1 and M&.;; decreases slowly as i35 reduced by
two orders of magnitude. The behaviorAt;; appears to be consistent with the reduction
in the observed period of the centerline oscillations and with the logarithmic nature of 1
filament self-induction law. This indicates that at a gifilamentresolution level the critical
time step is restricted by theenterlineevolution rate. Since the optimized schemes requir
adequate resolution of the filament centerline only, the present tests show that they are
effective in overcoming the stiffness of the equations of motion.

It is also interesting to note thatt.; for scheme M1 is consistently larger than that
of M2. For the conditions of the present simulations, the results in Table Il show tt
at the critical time step there are about 30-50 iterations per period for scheme M1
about 100-200 iterations per period for scheme M2. This behavior can be attributed to
fact that scheme M1 avoids the evaluation of higher order derivatives [3, 12] which ente
the expressions of curvature and binormal. Combined with the performance measures ¢
previous section, the resultsin Table Il indicate that if the differencasin were accounted
for then scheme M1 would outperform M2.

One should also note that fer= 0.0002, the agreement between the predictions for M:
and M2 is evidently degraded. The deviation between the two curves in Fig. 6 is 3.24
and the corresponding deviation based on peak velocity is 2.37%. In order to examine
origin of the deviation, we note that for M2 with = 256 andK = 3, the peak slenderness
ratio based oy IS €1 = maXo 1 kmax(t)o1(t) = 0.0926. For M1 withN = 256 K = 3,
anda = 2, the peak slenderness ratio baseaois ¢; = 0.0926; based on,, we have
€, = 0.1853. As discussed in Section 4, slenderness ratios above 0.1 are beyond the r
of validity of the slender vortex theory and the predictions of the optimized schemes n

— Ml — Ml
125 | 70 M2 4 125 f [oo- M2

max. curvature
max. curvature

time time

FIG.6. Evolution of the maximum curvature for a perturbed vortex ring witix 0.002 (left) ancs™= 0.0002
(right). Plotted are results obtained using schemes M1 and M2.
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consequently suffer from significant modeling errors. Thus, the deviations observed in Fi
atg = 0.0002 appear to be due to the poor choic&ainde in M1. Note that ab"= 0.002
the deviations between M1 and M2 are harder to detect, which also suggests that lar
effects become more pronounced as one extrapolates across a larger core size range.
To verify the above claim, computations were repeated using M1Kvith2 andx = 1.5.
For these values oK and«, the computed values ef ande, are 0.0617 and 0.0926,
respectively. Consistent with the experiences of Section 4, the corresponding results
shown) are again in close agreement with those of M2, with relative deviations of 0.97:
for peak curvature and 0.912% for peak velocity. This enables us to emphasize that
predictions of the improved schemes and original method are consistent with each o
and independent of the choice of numerical parameters, as long as these parameters
the restrictions of the numerical construction and of the underlying slender vortex theo

5.3. Tests with Large Deformation

In the numerical examples of Sections 5.1 and 5.2, the perturbation initially impos
had a small amplitude and the deformations of the filament centerline remained moder
Specifically, spatial variations of the filament curvature were with20% of the mean,
approximately.

This section provides a numerical example which illustrates the performance of 1
optimized schemes in a regime with O(1) changes in the filament curvature. To this end,
consider a slender ring with = 0.002, initially perturbed using; = 5, ko, = 6, anda; =
a, = 0.03. Unsteady computations are performed using M1 and M2. In order to obsel
the guidelines of Section 4, for M1 we uge= 2, « = 1.25, andN = 1024; for M2, we
useK = 2.5 andN = 1024.

Results of the simulations are shown in Fig. 7, which shows the evolution of peak curvat
and the spatial distribution of curvature along the filament arc length at the end of 1
computations. The results clearly show that the peak curvature changes substantially
time and that significant differences in the curvature occur along the filament centerli
In addition, Fig. 7 shows that the predictions of M1 and M2 remain in close agreems
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FIG.7. Left: Evolution of the maximum curvature of a perturbed vortex ring witis 0.002 a; = a, = 0.03,
k; =5, andk, = 6. Right: Spatial distribution of the curvature along the filament axis=at0.75. Plotted are
results obtained using M1 with = 2, « = 1.25, andN = 1024 and M2 withK = 2.5 andN = 1024.
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with each other throughout the computations. This agreement provides strong suppo
the validity of the optimized constructions.

6. CONCLUSIONS

The construction of three improved schemes for the simulation of slender vortex filame
is discussed. The schemes are based on the discretization of the filament centerline
desingularized Lagrangian elements and transport of these elements using the cents
velocity. In the first scheme, the centerline velocity is obtained via logarithmic extrapolati
of two thin-tube velocity estimates with artificially large cores. In the second scheme,
centerline velocity is obtained by combining one thin-tube velocity prediction with a loc
correction formula. Meanwhile, the third scheme relies on a combination of local/distz
thin-tube predictions evaluated on fine/coarse resolution levels. The performance of
improved schemes is analyzed in light of unsteady calculations of a perturbed sler
vortex ring in three dimensions. The computations show that the predictions of the r
schemes are in close agreement with each other and with results of previous models.
computations also show that, by only requiring adequate resolution of the filament center
and allowing large integration time steps, the improved schemes defeat the stiffness o
equations of motion.

We close by noting that the present constructions differ from those of Zhou [9], wl
used an asynchronous splitting technique to treat stiff local terms and nonstiff nonlc
terms, and Howet al. [12], who relied on a recasting of the filament equations of motiol
using generalized curvature coordinates. It appears to be possible, in principle, to ¢
further enhancement of performance by combining some of the present techniques
those outlined in [9] and [12]. Possible extensions also include the generalization of
present methods to accommodate core size variations along the filament centerline.
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